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Bose-Einstein condensation in arbitrarily shaped cavities
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We discuss the phenomenon of Bose-Einstein condensation of an ideal nonrelativistic Bose gas in an
arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities,
especially on the critical temperature of the system, is considered. We use two main methods that are shown
to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-
Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the
energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The
application to some simple cavities is discus4&1.063-651X99)03101-3

PACS numbegps): 05.30.Jp

I. INTRODUCTION ticle number get small enough. In this article we want to give
. . a systematic treatment of this problem.
It is now well over 70 years since the phenomenon re- . : .
. : ! In doing this we are going to extend a recent careful and
ferred to as Bose-Einstein condensat{BiEC) was first pre- - . .
i ) ; . beautiful study of BEC in a cubic volume where the gas was
dicted [1,2]. Until recently the best experimental evidence o .
. . .~ supposed to fulfill Dirichlet boundary conditions at the
that BEC could occur in a real physical system was liquid .
) . boundary of the cavity16]. The authors there employed an
helium, as suggested originally by Lond$8]. More re- :
cently it was suggesteld,5] that BEC could oceur for exci approach where the sum over the discrete spectrum was re-
y 99 ’ placed by an integral with an appropriate density of states.

;ons n celrtalnhtype§ of nonm%tallls:dcrysta}imcn as Cucl, This density was obtained by the knowledge of the energy
or examplg. There is now good evidence for this in a num- spectrum in this example.

ber of experiment$6]. However, the most exciting experi- ™|, s article we are going to treat an arbitrarily shaped

mental evidence for BEC has come from the observations ofyyity. The methods we are going to employ are the so-
very cold alkali gases. BEC has now been observed to ocCWyjled heat-kernel techniques extensively used in finite tem-
in gases of rubidiun{7], lithium [8], and sodium[9]. In perature relativistic quantum field theory starting with the
these experiments BEC has been realized in magnetic trapgork of Dowker and Kennedj17]. However, in these con-
and laser traps, in small volumes far away from the infinitesiderations the stress was more on the influence of gravita-
volume limit. Although nowadays a few million particles tional fields on the quantum statisti¢csee alsd18]). Re-
remain in the trap, in these early experiments only up tacently also the influence of boundaries was considered in the
2000 particles remained there so that it was by no meansontext of the Casimir effedtl9,2( and of BEC as symme-
clear if calculations done in the thermodynamical limit are antry breaking[21,22. In nonrelativistic theories these tech-
accurate treatment when considering this experimental sittniques are, however, nearly unemployed and we want to
ation. (For a more detailed analysis of this see R¢l—  show in the present article that they also can be used here in
15].) This motivates us to consider the related problem of thea very effective way.
quantum statistics of a finite number of particles in an arbi- The plan of the paper is as follows. First we develop the
trarily shaped cavity. guantum statistics dfl noninteracting bosons in a finite cav-
When thinking about quantum statistics in finite volumesity of arbitrary shape. We will exemplify the use of heat-
there appears an immediate difference to the thermodynamigernel techniques and of the Mellin-Barnes integral represen-
limit. Quantum particles confined to a finite volume of arbi- tation for the calculation of the partition function. We will
trary size inevitably have a nonzero kinetic energy, hencexplicity show what influence the boundary and its shape
they must exert some pressure. Taking-sized cavities and have on all thermodynamical quantities, especially on the
the parameters typical for liquid helium it can be seen thatritical temperature at which BEC occurs. In Sec. Il we
the zero-point pressure is of measurable magnif@6g But  describe an alternative approach where sums are converted
not only the pressure but also all other thermodynamicainto ordinary integrals with an appropriate density of states
quantities may deviate substantially from the results obtaine¢actor. We will show that the density of states is determined
in the thermodynamical limit once the volume and the par-dy the heat-kernel coefficients of the associated Stihger
operator. The next section is devoted to the discussion of
some specific examples like the rectangular box and the
*Electronic address: kirsten@itp.uni-leipzig.de spherical cavity with various boundary conditions. In the fi-
"Electronic address: d.j.toms@newcastle.ac.uk nal section we present a short summary of our main results.
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Il. QUANTUM STATISTICS OF A FREE BOSE GAS At this stage we would like to interchange the summa-
IN A d-DIMENSIONAL FINITE CAVITY tions overN andn and the integration in order to arrive at an
expression containing thé¢ function associated with the

Let us consider a system f noninteracting bosons in a Schradinger equation(2.1),

finite cavity M with boundaryd M and with single-particle
state energiek, determined by the Schdinger equation

ﬁz _ ’ E.— C_s. 0.8
~ S AN =EndN();  alxcan=-rs (2D {9)=2" (En—po) 2.9

where we do not need to fix here the boundary conditiongseneral zeta function theory tells us that the rightmost pole
imposed on the field because our treatment will be quitg £(s) is located as=d/2, see for exampl&23], followed
general. _ N by poles ats=(d—1)/2, ...,1/2; —(21+1)/2, e N,. In

In the grand canonical approach, the partition sum the'beneral the rightmost pole appearssatd/m whered is the

reads dimension of space anuh is the order of the elliptic differ-
ential operator, here 2. Furthermore, we need the polyloga-
q=—2, In(1—ze FEn), (2.2  rithm,

N
with the fugacityz=exp(Bu), u being the chemical poten- . .
tial and B=1/(kT). In the discussion of BEC the ground |-|n(X)=|Z1 i 2.9
state always plays a special role and for that reason we write N

q=0qo— > In(1—ze FEn). 2.3 bgsic prqperties of WhiCh may be found ﬂﬁ4,2§. As we
N will see in the following, the treatment of arbitrary dimen-

siond creates no additional complications. But it may not be
Here the prime indicates that the ground state is to be omitef only academic interest. In this context we mention the
ted andqg is the contribution of the ground state with energy analogies between bosons in a two-dimensional box and

Eo and degeneracy, bosons in a one-dimensional harmonic oscillator potential
analyzed in Ref[26]. Similar analogies between higher-
Qo= —doIn(1—ze FEo), (2.9 dimensional cavities and external potentials in dimensions
d=1,2,3 remain to be explored.
For the calculation of the partition sum, E@.3), we will Due to the above remarks, in order that the summation
first expand the logarithm to obtain and integration might be interchanged we have to impose
B that Rec>d/2 to obtain
Gmaot S, S e ) (2.5
n=1'N N 1 ctiow
q:%"'_-f daT(a)B™Lip (e P ™M) (a).
For the evaluation of this kind of expressions it is very ef- 27 Jo—iee
fective to make use of the Mellin-Barnes type integral rep- (2.10
resentations,

1 ot [oo This is a very suitable starting point for the analysis of cer-
e V= daT'(a)v™°, (2.6)  tain properties of the partition functioq Closing the con-
2ml Jo-i tour to the right corresponds to the lar@eexpansion; clos-
ing it to the left to the smalB expansion.(The relevant
valid for Rev>0 andce R, ¢>0. Equation(2.6) is easily  dimensionless expansion parameter will be made cleay later
proven by closing the contour to the left obtaining immedi-To the right of the contour the integrand in §§.10 has no
ately the power series expansion of exp]. Using Eq.(2.6)  poles, which means that the largebehavior contains no
in (2.5 we find (defining u.= Eo) inverse power in3. One might show however, that the con-
tribution from the contour itself is not vanishing at infinity
B B , _ leading to exponentially damped contributions g <, the
q=0qo+ nzl e Nl M)% e "AENTE) well-known behavior of partition sums at low temperature.
However, the relevant range for the analysis of BEC is the
small-8 range.(As we will see we are going to obtain a

o

[

=Qot Z n e MAlkemw) reliable expansion if the de Broglie wavelength is small com-
=1 pared with the typical extensions of the cavity. kan-sized

L1 CHioo cavities this will be true near the transition temperafure.

X% 2 Join daT'(a)(Bn) “(ENn—Eq) ™™ Thus we close the contour to the left and pick up only the

leading two terms atr=d/2 and(for d>1) a=(d—1)/2.
(2.7  We find
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q:q0+F(dIZ)B‘d’ZLi(dﬂ),z(e“g(“c‘“))Resg(dIZ) As is easily seen, the residues{gf), Eq.(2.8) might be
expressed through the heat-kernel coefficients in(Ed.3.

- —(d— . _ _ Using the integral representation for thefunction we write
+I > ),3 b l)/2|—|(d+1)/2(€‘ Blue=m) g g P
1 )
_ s)==—— >, | dtts"le En—wo), 2.1
X Res{((d—1)/2)+ -+, (2.11 {(s) (s % JO (217

with the residues of(s) denoted by Reg. The casel=1 is Then we split the integral intbe [0,1] andt e [ 1,0). For the

3ipr§glr?sli?ntrlﬁg(ss)uglae Sagi?\ pocl?)rifizét?o_nlllc?;gib"s:(%r) tk:)a]:t first interval we use the asymptotic expansi¢hl3, the
g contribution from the second interval is analytic srsince

which, as a rule, no detailed information is available. So . .
= ; . . ; the pole terms come from the-0 behavior of the integrand.
later, ford=1, we will consider only the leading contribu-

tion coming from Reg(1/2) and which is correctly given Thus we find
above. 1 1 = L
In order to obtain a reliable approximatién any dimen- {(s)= ——— —— E aJ dt s~ 1-di2+1
sion) at the critical temperature where BEC occurs we are (4m)921(s) 1=0iZ1... Jo
thus left with the task of determining the leading poles of the L
£ function associated with the Scllinger equation. Con- +(finite pieces
cerning this determination there are deep connections be- 1 1 %
tween the/ function of an operator and its heat-kernel de- = — A (finite piece
fined ag[27] (4792 T (s) |=0,1/22,1.._ s+1—d/2 ( P 3
(2.18
K(t)y=2," e 'Enro), 2.1
® EN: 213 and read off
The smallt behavior of Eq.(2.12) is of special relevance ag
here, Res{(d/2)= —————, (2.19
(a2 (4m)¥2r (d/2)
K~——0 > aft, (213 a
(4mt)¥21=0i721... Resz((d—1)/2)= 12 (2.20

(4m) 920 (d—1)/2)
where for a generally curved spacetime in the meantime the

first 6 coefficients are known for an arbitrarily shapedAdditional poles are located to the left of the above ones.
smooth cavity{28] and for an arbitrary second-order elliptic The associated residues will depend on the details of the
operator with leading symbol the metric of the spacetimeboundary of the cavity like its extrinsic curvature form. Hav-
We will need here only the first two coefficients which for ing, however, current experimental situations in mind, these

the Schrdinger operator at hand read are probably negligible and so we are not going to present
more than the subleading order in our results. In doing this,
om) ¥ results will be very comprehensible, but let us stress that

20=| 77 : (2.14  higher orders could be included easily.

Using Egs.(2.19, (2.20, (2.14), (2.15 in the result
(d=1)12 (2.17) for the partition sum, we find to the two leading orders
_ ( Zm) Jm (as mentioned, fod=1, now and in the following, only the

2= | 52 3 (VIb, (215 leading piece is correct and will be considered
with V the volume of the cavitygV the area of its boundary, i Bl ) \%
andb being a parameter depending on the boundary condi- q=0ot Li(g+2)2(€ ¢ )F
tions, T
- " b ov
|- 1 for Dirichlet boundary condmons2 L + 7 FU(du)/z(e_BWC_“)H e (220
1 for Neumann boundary conditions.” T

Although to the authors knowledge Neumann boundary con\—NIth the de Broglie wavelength

ditions do not occur in physical applications of nonrelativis- h
tic theories considered here, we include them for mathemati- Nz (2.22
T . .
cal completeness and because they do not lead to any extra V27mkT
difficulty in calculation. The relevance of Neumann bound-
ary conditions in physics stems from the treatment of theHere it is clearly seen that the expansion parameter is given
electromagnetic field in the presence of ideal conductindy (typical extension of the cavipih;. Our results are ac-
plates, or the bag model in quantum chromodynamicgurate for large values of the expansion parameter; this is,

(QCD). the expansion obtained is an expansion about the thermody-
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namic limit, which is the relevant one for considering BEC.
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dimensiond. Ford>3 all of the terms in Eq(2.30 are finite

It is useful to introduce the dimensionless expansion paramas u— u., and we can approximate E@.30 by

eter

(2.23

with the definitionsV=L% andgV=«L% . The dimension-
less parametex contains information related to the shape of
the boundary. Then Eq2.21) reads

0=0o+ Li(gs ) (€ Alre 1) ¢

+K_bL e Plucmmyed=14 .

7 (2.29

i (d+1y72(

At sufficiently low temperatures, where the ground-state

population is large, the approximation=u.=E, holds.
Then using Li(1)=¢gr(n), n>1, Eq.(2.21) simplifies to

vV b Y
q=0ot {r((d+2)/2) =5 + 7 {r((d+1)/2) = + -,
AT AS
(2.29

which is a very good approximation at some range below th
critical temperature.
Let us now continue with the particle number,

Jq
N= 1(—) (2.2
Bl 6
Here one has
. e AENHO
N=Not 2 epmrms @2
with the ground-state occupation number
No=—— 20 2.2
0T Bl w1’ (2.28

(Recall thatu.,=Eg.) The high-temperature expansion Nf
is easily obtained by noting

dlin(x) 1

x x Hin-1(). (2.29
It reads
N=No+Ligy(e #re#) ¢
kb
+ —Li(g_qyp(e Alrem)gd=e oo (2,30

4

The critical temperatur@. (in the absence of a phase tran-

sition) can be defined as the temperature at which the num-

a, Kb d-1
N={r(d/2)éc+ - Lr((d—1)/DE "+ (2.3])
The critical temperature is defined \§a obtained by taking
T=T. in Eq. (2.23. This assume$<1. Defining

d N

0= Zn(di2)’ (2:32

3

which gives the critical temperature in the byl thermo-
dynamiq limit,
) 2/d

and assuming thag.= £o(1+ ), with y<1, to leading or-
der we can approximat@ve use the temperature hgre

h2

. N
0" 27mk

Vin(di2) (2.33

T.=To| 1

kb {r((d=1)/2) 1

§tis seen, that, depending on the boundary conditions im-
posed, the critical temperature can increase or decrease. The
magnitude of the correction behaves like ' and is typi-
cally not negligible. It is seen explicitly that the corrections
are going to vanish foN—oo.

Let us now consider the lower-dimensional cases and we
start withd= 3. Then we need

Li 1(e_ﬁ(#c_M)): _|n[1_(e—B(Mc—ﬂ))]_ (2.35
Near u=pu. we use Eq(2.28 to approximate
=In{ 1 ! 2.3
B(pme—p)=In +N—o “Ng’ (2.36

Then in three dimensions the analogue of E431) reads

N(1—f)={r(3/2) &+ KTbln(fN)gz—i-u- (2.39

Here it is not possible to sét=0 in order to define a critical
temperature, since in order to obtain E.37) we have as-
sumedNy>1 [see Eq.(2.36)]. This roughly reflects the fact
that in three dimensiongs well as in 1 and 2 as seen bejow
the number of excited states is lower than in higher dimen-
sions, and as a result, in the temperature range considered,
particles have to reside in the ground state in order that the
thermodynamic equation fdx is fulfilled. However, given
f#0 andN, this might be solved for the temperature,

ber of particles in the ground state begins to become large.

We will set N=fN, with f representing the fraction of par-
ticles in the ground state. If we assumg>1, then for tem-
peratures close td, we expectu=u. [see Eq(2.28]. The
behavior of the polylogarithms in E§2.30 depends on the

2
T=T0[1—§(f+a) 2.38
with
h2 N 2/3
TO:Zwmk( gR(s/z)v) (239
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and HereU, is the zero-point energy,
kb In(fN) d.E
a=——, 2.40 - 0=0
723N ( Vo= i1 (249

valid nearu=pu.. This parallels completely E¢2.34). De-
fining the critical temperatur@, as the temperature where a
given fractionf of the number of particleBl is in the ground

To the approximation considered,is most easily found by
using Egs(2.11) and(2.29. As an immediate result we have

state, Eq.(2.38 can easily be used to determiiig. This aq

equation also shows that in the thermodynamic liminay U=-— (9—+,uN

be set to zero andl is a “real” critical temperature. This B

reflects the fact that in three-dimensional unbounded space d

the ideal Bose gas exhibits Bose-Einstein condensation in the =Uo+ Eﬂ_lLi(d+2)/2(e_ﬁ(“°_“))§d

sense of a phase transition.

We proceed witld=2 and need in addition kb . i1
+g (A=D1 Ligsynle Pluemr))g

. - -~ ’ a
e e = m+ v (@4 +EgLigp(e” Aliemr)) ¢

valid for u=u.. Using the same approximation as before, kb — Blue— )y gd—1
. N + J— - Me™ M + ..., .
B(ue— ) =1/Ny, this results in Bog i€ Tre )¢ (2.50
kb With the already presented expansions aroyse . the

N(1—f)=&%n(fN)+ EVEN+---.  (2.42

behavior near the phase transition is easily displayed.
Finally we are left with considering the specific heat,

4

Solving to leading order fo€ given f=0 we find

/ C (&U) (2.5)
_ N = 9T . .
gc_ In(fN) (243) N,V

The slightly more difficult point here is, thdat has to be

considered as fixed and gohas to be considered as a func-
h2 N tion of N and 8. We will need ¢/dB8)(Bu), which is found
Tczm W (2.44) by differentiating Eq.(2.27) given thatN is fixed,

or in the temperature

Finally in d=1 considering only the leading contribution ﬁ =0. (2.52
results in IBlyy
N Using Eq.(2.30 to the leading order, conditiof2.52 yields
&= ﬁ (2.49
J
with @[B(Eo—u)]
2 . _ _
Tem g e (2.46 - (d12)B MLigg(e ke #) &l
2mkm iV (e~ Blre=m) ’
: , - 0 +Ligp—q (e Plremw) g

In dimensiongd=1 andd=2 it is clearly seen that we can- [1— (e Alrer))]2
not setf=0. This reflects the fact that even in the thermo-
dynamic limit Bose-Einstein condensati¢ms a phase tran- (2.53

sition) is not possible.
Another interesting quantity of the system is its internal
energy defined by

It is seen that in the approximation= w. one finds the
above equation to yield zero as it should. Neglecting pieces
coming from Eq.(2.53 (one can show that this is justified
for d<7) we only have to use E@2.50 to find

g. (2.4

dy P
1+ = |Licgs o€ Al )y gd

2

Of course the energy of the system is the sum of the single- k 2
particle energiegy multiplied by the occupation number,

©3

-1y ~Blue—m)) gd—1
o BEN—1o) *t 3 Liggeayp(@ FHem ) g7 24,

2
1_efﬁ(EN*Mc) ’ (248) (254)

b

U=Uy+ > Ey
N
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showing once more the decrease or increase in the specifiier of modes for the boundary value problem in the cavity
heat depending on the boundary conditions. Using previoutor which the eigenvaluesy<\. We can write
formulas, expansions fqi= . and for specific dimensions

are easily found. _
A slightly different treatment, which we do not pursue in N()\)_% 0N =), 32
this paper, could also be used. This uses the effective fugac-
ity (for the anisotropic harmonic oscillator sgit]) where 6(x) is the Heaviside distributiofor step function
_ defined by
Zerr=2€ PEL (2.55
. . . . 1, x>0,
where E; is the first excited level with degenerady.
Whereas in the calculations presented above only the ground o(x) = 0, x<0, 3.3
state has been treated separately. We can now separate the 1 '
ground state and the first excited level to find X x=0.
V . .
q=0o+d;Li(Zerr) + Li(d+2)/2(zeff)F This gives the result
g
A= 1+ S o (3.4
ANSA A=A 2

b ov
*t7 FLl(d+1)/2(Zeff)+ R
T as used by Baltes and Hii81].
This expansion is a very good approximation even below the  1he &im now is to treat the eigenvalues as a continuous
critical temperaturéfor the harmonic oscillator sd@4]). All distribution rather than a Filscrete set by 'mtroducmg the ei-
thermodynamical properties are obtained in the same mann@fnvalue(or spectral densityp(A). We define

as before.

p(M)dA=NA+dN)—=N(N) (3.5
Ill. DENSITY OF STATES METHOD B dN(N) a6
An alternative approach to the use of the Mellin-Barnes o dh 3.6

contour integral representation is to try to convert the sums

for the thermodynamic quantities directly into ordinary inte- Use of Eq.(3.2) for M(\), along with the distributional iden-
grals with an appropriate density of states factor. This hasty 6'(x)=4(x) gives

been widely used in a variety of problems in statistical me-

chanics.(See Ref[29], for example. Recently Grossmann _ _

and Holthaus[10,11 have used such a density of states p()\)_% SN =An). 3.7
method to study the statistical mechanics of particles in a

harmonic oscillator potential trap, and in a three-dimensionalf we use the familiar exponential representation for the
cubic box[16] with Dirichlet boundary conditions. The har- Dirac & distribution, then

monic oscillator trap is characterized by a density of states

_ 1 ” IK(N—Ap) — 1 fioc tON—Xp)
E—E—2+ E o1 p()\)—% P Lcdke N_% o | dret T,
P( )_ 293 QZ’ ’ (38)
We may now translate the integration contour in E38) to
the right by an amount wherec € R with ¢>0, and assume
that we are permitted to interchange the order of the summa-
tion and integration. This results in

where) = (w;w,w3)* is the geometric mean of the aniso-
tropic harmonic oscillator frequencies. In Rgf30] we
showed how it is possible to evaluate analytically, and
obtain additional corrections to E(B.1) (see alsq14]). The

purpose of the present section is to discuss the method in 1 fo+ie
greater detail in a more general setting, and to show how p(\)==— dt eK(t), (3.9
results equivalent to those of the previous section may be 27l Jo-i

obtained with the density of states method. The basic idea
behind the method can be found in RES1] with a number ~ Where
of examples illustrated.
Suppose that we have a self-adjoint differential operator K(t)=>, e ™, (3.10
A that possesses a set of eigenval{ieg} that are all posi- N
tive. HereN represents a multi-index which labels the eigen- ) ) )
values. For the case of statistical mechanics in a cagity, Equation(3.9) shows thap(\) is the inverse Laplace trans-
can be taken to be the Hamiltonian witky the energy levels form of K(t). Inversion of Eq.(3.9) results in
Ey . The eigenvalues depend on the details of the cavity and
boundary conditions imposed, but t_he method we describe K(t)= fwd)\ e Pp(\). (3.11)
can be used regardless of such details A/gt) be the num- 0
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Another way of arriving at Eq3.9) is to note that Eq(3.1)  the analysis in Sec. Il is easily modified to show tljés)
follows directly from Eqs(3.7) and(3.10), establishing that has a simple pole a=r; with residue

p(\) is the Laplace transform df(t). The inversion for-
mula for Laplace transforms gives E¢B3.9) immediately

without the intermediate steps in E@®.9). Res{(S)|s=r,= T(ry) 317
The point of Egs(3.9) and(3.1]) is that givenK(t) as

defined in Eq(3.10 we can evaluate the density of states infor r;#0,—1,—2,...; and

a straightforward way. In certain simple cases, such as the

harmonic oscillator potential, where the eigenvalues can be {(s=—r)=(—D)i(—rp!c (3.1

written down explicitly, it is possible to perform the sum in o

Eqg. (3.10 and evaluateK(t) in closed form(see Ref[30] forri=0,—1,—2,... .Therefore the coefficients appear-

for a case of this In the generic case, where the eigenvaluednd in the density of states may also be found from a knowl-
are not known explicitly, we can still obtain a result for the €dge of the generalized function. This provides a direct
density of states by using the known asymptotic expansioan between the density of states approach and the method

for K(t) ast—0 [27]. described in Sec. II. _ _ _
Assume that as—0 we have the generic expansion We will conclude this section by showing how the density
of states method may be used in the specific case of an ideal
k gas confined in a general cavity. Tlepotential defined
K(t)=2, cit i+ Ot "k+1) (3.1  earlier was written as
=1
. ) 0=0o* Jex- (3.19
for some coefficientx; and powersr; with r{>r,>- ..
>r,. The simplest way to evaluagg\) is to use Eq(3.11)  where
and the relation
Qo= —dgIn(1—ze #Fo) (3.20
1 S
tﬂ:ﬁfo dA AT le ™, (3.13  was the ground-state contribution, and
o ) . * @hBlr—pe)
which is valid for Rez>0. It is now easy to see that le:n—l . END' e NB(EN—Ep) (3.2
koo
p()\)zz T‘))\ri—l_ (3.19 represents the contribution from the excited states. The sum
P r

over energy levels in Eq3.21) can now be converted into
. . ) ) an integral over a continuous energy variable by introducing
Integrating this result with respect doresults in a density of states factor. From E¢8.14) and using the
‘ coefficientsc; found in Sec. Il we have
Ci r
/\/’()\)—;l NG AL (3.19 VBIZEIZ-1 b (5v)gld-DIZE(d-3)2

PE=aran T4 -1

(3.22
Although the analysis that have presented makes no at-

tempt at proper mathematical rigour, the main result in Eqjf we keep only the first-order correction to the bulk expres-
(3.14 of (3.19 is in agreement with a refinement of Kara- sjon as before. To this order we may approximate
mata’s theorem due to Brown¢B2] (a nice account is con-

tained in Ref.[31]). It is important to emphasize that the *
result forp(\) or M\) refers really to the average number Oex= >
of eigenvalues. Generally the number will fluctuate around n=1 n
some average value. These fluctuations can be important
some context§31,33. Another point worth stressing is that
our results have assumed thain Eq. (3.12) is positive. The
results (3.14 and (3.15 are actually true for alr, if we
define 1I'(r;)=0 whenr;=0,—1,—2,... . Theestablish- b - _ o
ment of this result requires a more powerful approach than tah (0V)Ligs1yp(€ PHe™#))  (3.29
Laplace transform§32].
The density of state8.14) is determined by a knowledge i agreement with our earlier method. The replacement of
of the coefficients; appearing in the asymptotic expansion the |ower limit on the integral with 0 assumg@E,<1 so
of K(t). These coefficients can be evaluated from a knowlthat the temperature is well above the temperature associated
edge of the generalizefifunction associated with the eigen- yjith the ground-state energy.e., KT>E,.) If the energy
values\y as discussed in the previous section. Defining  gapE, — E, is of the same order of magnitude as the ground-
state energy, theBE;<<1 as well. Results for the particle
g(s):% ol (3.16 Pourr;ber and other thermodynamic quantities follow as be-

e"B(h=re) o
—f dEp(E)e "PE.  (3.23
E1—Eo

Heplacing the lower limit in the integration with 0, we obtain

7d . — —
Uex= N7 OV Li (g o€ Plie™ M)
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IV. APPLICATION OF THE RESULTS Finally, for Neumann boundary conditions,
TO SOME CAVITIES

. . —— . . AIX)d(Xq, ... Xg)|x=0=0,
This section will discuss some specific examples like the ( o d |x| 0

rectangular box and the spherical cavity with various bound- _

ary conditions. The rectangular box has been the subject of (0%) (X1, - - Xg)l-1,= O,
considerable investigatioriSee Refs[34,35 for reviews) the enerav eigenvalues read

In order to get all thermodynamic quantities as derived in gy €19

Secs. Il and lll, we only need to give the consténtthe n\ 2

volume of the cavityV, and the boundaryV. Another in- E, =2 _') ., neNo, (4.7
teresting quantity is the lowest-energy eigenvalue as the S A

critical value for the chemical potential. .
with u.=Ey=0, b=1 andV, ¢V, as before.

All thermodynamical quantities may now be given imme-
diately with the formulas in Sec. Il. Especially for the critical

For the rectangular box with side lengths, ... Ly one temperature one has that periodic boundary conditions give a
can consider, for example, periodic, Dirichlet, and Neumanrgritical temperature identical to the thermodynamic ligait
boundary conditions. In Cartesian coordinatex  result of being no boundary thereDirichlet boundary con-

A. Rectangular box

=(Xq, ... Xq) With x;e[0L;]. ditions increase it and Neumann boundary conditions de-
For periodic boundary conditions, crease it.
Looking at the distribution of the eigenvalues around the
(X1, e Xy Xa) = (X, Xt LX), ground state of the system an intuitive explanation of this
(4.3) behavior is possible. Let us assume for this equal compacti-
with i=1, ... d, the energy eigenvalues are fication sidesL;. It is clear that the lower the density of
eigenvalues near the ground state the higher the transition
d 1o 2 temperature will be. Then the following might be stated.
En,. ... nd:izl TN N e’. (4.2 Neumann boundary conditions lead to the lowest condensa-
= I

tion temperature because it has the smallest spacing between
the ground state and the first excited level. This compensates
the doubled number of eigenstates in the periodic case, the
eigenvalues that are, however, four times higher. The differ-
ence between Neumann and Dirichlet boundary conditions is
d based on the same observation; in addition the degeneracy of
ve=11 L, (4.3  the eigenvalues is the same for these two boundary condi-
i=1 tions. The difference between periodic and Dirichlet bound-
ary conditions is not obvious; however, the results show that
and u.=Eq=0. . the slightly smaller level spacing for Dirichlet boundary con-
For Dirichlet boundary conditions, ditions is more than compensated by the doubling of the
degeneracy for periodic boundary conditions.

Periodic identification means that effectively there is no
boundary.(Equivalently we can regard as thed torus) In
this caseb=0. Furthermore, one has for the volume

d(X1, oo Xi—1,0X 41, - - - Xq) =0,

d(X1, .o Xi—1.Li Xis1,s - .. Xg)=0, B. Spherical cavities
For spherical cavities an explicit knowledge of the eigen-
one gets values is not at hand and for that reason also a numerical
d 2 treatment of the partition sum is not immediate. For this kind
E _ (W_n') n eN. (4.4) of example our analytical approach is most useful.
foefa & L) ' It is convenient to introduce a spherical coordinate basis,
with r=|x| andd— 1 angles)=(6,, ... ,04_2,¢). Inthese
As mentioned, see E@2.16, b= —1, the volume is as be- coordinates, a complete set of solutions of the Sdimger
fore and, furthermore, equation together with one of the mentioned boundary con-
d ditions may be given in the form
— I
ﬁv_z; Vals. 4.9 11, Q) =112, o \/ﬁwl,nr/ﬁ)YH(d/Z)((?)s:)

Here,V{) , is the volume of théth side of the rectangular

. with J _ being Bessel functions any hyper-
cavity, V{) ;=L;---Li_1Li41- - -Lg. Furthermore, | +(d-2)/2 g +az TP

spherical harmonics[36]. Here, E,,n=W,2’n and the
- w; ,(>0) are determined through the boundary conditions

d 2
Eo= > (L_.) . (4.6 by

i=1

o o Ji+d-2y21(V2mw RI7) =0 4.9
If we specialize to thel cube, ther?V=2dL%"* which gives
xk=2d. for Dirichlet boundary conditions and
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1—d/2 over discrete energy levels can be replaced with an integral.
0=—FxJi+p@- 2)/21(\/_W| nRIT) Both methods make use of the so-called heat-kernel coeffi-
cients for the Schidinger operator, and equivalence between
\/ﬁw, n the two methods is shown in quite a general setting.
- 2721 (N2MW /1) g Our analysis shows clearly the way in which the geometry
of the cavity enters in all thermodynamic properties. In the
for Neumann boundary conditions. Although none of thesdimit considered, namely§= |—/7\T>1 the leading correction
eigenvalues is known explicitly, in order to obtain an ap-to the bulk limit term £ enters via the propertyx
proximation of all thermodynamic quantities, it is already =(aV)/V{~Y". Thus the leading-order correction is com-
enough to state the volume and the boundary volume of thpletely described by the volume and area of the cavity, with

spherical cavity, all finer details washed out faf>1. Finer detail would be
g Womd 1 p_resent in the next to subleading orderlln Ferms of the extrin-

7R _27°R sic curvature of the boundaryThe extrinsic curvature de-
- I'(di2+1)’ N= 2 ° (4.10 scribes how the normal vector to the boundary varies when

moving along the boundayy.

and to apply the results of the previous sections. These ideas are as well applicable to the canonical en-
semble. Furthermore, due to the connections between the
V. DISCUSSION AND CONCLUSIONS microcanonical and the grand canonical approach stated re-

cently in[37-39 it seems possible to develop this approach
We have described two methods for treating the |dea<L:1|SO ¥or t[he mlgrocanonlceg ensemble. P PP

Bose gas using the grand canonical ensemble in a general
cavity. The first method, described in Sec. Il, treats the par-

tition function as a sum over the discrete energy levels by

making use of the Mellin-Barnes integral representation for

the exponential function. The second method shows how to This investigation has been partially supported by the
obtain an adequate density of states factor so that the suPFG under Contract No. BO1112/4-2.
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