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Bose-Einstein condensation in arbitrarily shaped cavities
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University of Leipzig, Institute of Theoretical Physics, Augustusplatz 10, 04109 Leipzig, Germany
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We discuss the phenomenon of Bose-Einstein condensation of an ideal nonrelativistic Bose gas in an
arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities,
especially on the critical temperature of the system, is considered. We use two main methods that are shown
to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-
Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the
energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The
application to some simple cavities is discussed.@S1063-651X~99!03101-3#

PACS number~s!: 05.30.Jp
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I. INTRODUCTION

It is now well over 70 years since the phenomenon
ferred to as Bose-Einstein condensation~BEC! was first pre-
dicted @1,2#. Until recently the best experimental eviden
that BEC could occur in a real physical system was liq
helium, as suggested originally by London@3#. More re-
cently it was suggested@4,5# that BEC could occur for exci-
tons in certain types of nonmetallic crystals~such as CuCl,
for example!. There is now good evidence for this in a num
ber of experiments@6#. However, the most exciting exper
mental evidence for BEC has come from the observation
very cold alkali gases. BEC has now been observed to o
in gases of rubidium@7#, lithium @8#, and sodium@9#. In
these experiments BEC has been realized in magnetic t
and laser traps, in small volumes far away from the infin
volume limit. Although nowadays a few million particle
remain in the trap, in these early experiments only up
2000 particles remained there so that it was by no me
clear if calculations done in the thermodynamical limit are
accurate treatment when considering this experimental s
ation. ~For a more detailed analysis of this see Refs.@10–
15#.! This motivates us to consider the related problem of
quantum statistics of a finite number of particles in an ar
trarily shaped cavity.

When thinking about quantum statistics in finite volum
there appears an immediate difference to the thermodyna
limit. Quantum particles confined to a finite volume of arb
trary size inevitably have a nonzero kinetic energy, he
they must exert some pressure. Takingmm-sized cavities and
the parameters typical for liquid helium it can be seen t
the zero-point pressure is of measurable magnitude@16#. But
not only the pressure but also all other thermodynam
quantities may deviate substantially from the results obtai
in the thermodynamical limit once the volume and the p
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ticle number get small enough. In this article we want to g
a systematic treatment of this problem.

In doing this we are going to extend a recent careful a
beautiful study of BEC in a cubic volume where the gas w
supposed to fulfill Dirichlet boundary conditions at th
boundary of the cavity@16#. The authors there employed a
approach where the sum over the discrete spectrum wa
placed by an integral with an appropriate density of sta
This density was obtained by the knowledge of the ene
spectrum in this example.

In this article we are going to treat an arbitrarily shap
cavity. The methods we are going to employ are the
called heat-kernel techniques extensively used in finite te
perature relativistic quantum field theory starting with t
work of Dowker and Kennedy@17#. However, in these con
siderations the stress was more on the influence of grav
tional fields on the quantum statistics~see also@18#!. Re-
cently also the influence of boundaries was considered in
context of the Casimir effect@19,20# and of BEC as symme
try breaking@21,22#. In nonrelativistic theories these tech
niques are, however, nearly unemployed and we wan
show in the present article that they also can be used he
a very effective way.

The plan of the paper is as follows. First we develop t
quantum statistics ofN noninteracting bosons in a finite cav
ity of arbitrary shape. We will exemplify the use of hea
kernel techniques and of the Mellin-Barnes integral repres
tation for the calculation of the partition function. We wi
explicitly show what influence the boundary and its sha
have on all thermodynamical quantities, especially on
critical temperature at which BEC occurs. In Sec. III w
describe an alternative approach where sums are conve
into ordinary integrals with an appropriate density of sta
factor. We will show that the density of states is determin
by the heat-kernel coefficients of the associated Schro¨dinger
operator. The next section is devoted to the discussion
some specific examples like the rectangular box and
spherical cavity with various boundary conditions. In the
nal section we present a short summary of our main resu
158 ©1999 The American Physical Society
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II. QUANTUM STATISTICS OF A FREE BOSE GAS
IN A d-DIMENSIONAL FINITE CAVITY

Let us consider a system ofN noninteracting bosons in
finite cavityM with boundary]M and with single-particle
state energiesEN determined by the Schro¨dinger equation

2
\2

2m
DfN~x!5ENfN~x!; fNuxP]M5•••, ~2.1!

where we do not need to fix here the boundary conditi
imposed on the field because our treatment will be qu
general.

In the grand canonical approach, the partition sum th
reads

q52(
N

ln~12ze2bEN!, ~2.2!

with the fugacityz5exp(bm), m being the chemical poten
tial and b51/(kT). In the discussion of BEC the groun
state always plays a special role and for that reason we w

q5q02(
N

8 ln~12ze2bEN!. ~2.3!

Here the prime indicates that the ground state is to be o
ted andq0 is the contribution of the ground state with ener
E0 and degeneracyd0 ,

q052d0ln~12ze2bE0!. ~2.4!

For the calculation of the partition sum, Eq.~2.3!, we will
first expand the logarithm to obtain

q5q01 (
n51

`

(
N

8
1

n
e2bn~En2m!. ~2.5!

For the evaluation of this kind of expressions it is very
fective to make use of the Mellin-Barnes type integral re
resentations,

e2v5
1

2p i Ec2 i`

c1 i`

da G~a!v2a, ~2.6!

valid for Rev.0 andcPR, c.0. Equation~2.6! is easily
proven by closing the contour to the left obtaining imme
ately the power series expansion of exp(2v). Using Eq.~2.6!
in ~2.5! we find ~definingmc5E0)

q5q01 (
n51

`
1

n
e2nb~mc2m!(

N
8 e2nb~EN2E0!

5q01 (
n51

`
1

n
e2nb~mc2m!

3(
N

8
1

2p i Ec2 i`

c1 i`

da G~a!~bn!2a~EN2E0!2a.

~2.7!
s
e

n

ite
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-
-
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At this stage we would like to interchange the summ
tions overN andn and the integration in order to arrive at a
expression containing thez function associated with the
Schrödinger equation~2.1!,

z~s!5(
N

8 ~EN2mc!
2s. ~2.8!

General zeta function theory tells us that the rightmost p
of z(s) is located ats5d/2, see for example@23#, followed
by poles ats5(d21)/2, . . .,1/2; 2(2l 11)/2, l PN0 . In
general the rightmost pole appears ats5d/m whered is the
dimension of space andm is the order of the elliptic differ-
ential operator, here 2. Furthermore, we need the polylo
rithm,

Lin~x!5(
l 51

`
xl

l n
, ~2.9!

basic properties of which may be found in@24,25#. As we
will see in the following, the treatment of arbitrary dimen
siond creates no additional complications. But it may not
of only academic interest. In this context we mention t
analogies between bosons in a two-dimensional box
bosons in a one-dimensional harmonic oscillator poten
analyzed in Ref.@26#. Similar analogies between highe
dimensional cavities and external potentials in dimensi
d51,2,3 remain to be explored.

Due to the above remarks, in order that the summat
and integration might be interchanged we have to imp
that Rec.d/2 to obtain

q5q01
1

2p i Ec2 i`

c1 i`

da G~a!b2aLi11a~e2b~mc2m!!z~a!.

~2.10!

This is a very suitable starting point for the analysis of c
tain properties of the partition functionq. Closing the con-
tour to the right corresponds to the large-b expansion; clos-
ing it to the left to the small-b expansion.~The relevant
dimensionless expansion parameter will be made clear la!.
To the right of the contour the integrand in Eq.~2.10! has no
poles, which means that the large-b behavior contains no
inverse power inb. One might show however, that the co
tribution from the contour itself is not vanishing at infinit
leading to exponentially damped contributions forb→`, the
well-known behavior of partition sums at low temperature

However, the relevant range for the analysis of BEC is
small-b range.~As we will see we are going to obtain
reliable expansion if the de Broglie wavelength is small co
pared with the typical extensions of the cavity. Formm-sized
cavities this will be true near the transition temperatur!
Thus we close the contour to the left and pick up only t
leading two terms ata5d/2 and ~for d.1) a5(d21)/2.
We find
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160 PRE 59KLAUS KIRSTEN AND DAVID J. TOMS
q5q01G~d/2!b2d/2Li ~d12!/2~e2b~mc2m!!Resz~d/2!

1GS d21

2 Db2~d21!/2Li ~d11!/2~e2b~mc2m!!

3Resz„~d21!/2…1•••, ~2.11!

with the residues ofz(s) denoted by Resz. The cased51 is
special in thatz(s) has no pole ats5(d21)/250. For that
dimension the subleading contribution containsz8(0) of
which, as a rule, no detailed information is available.
later, for d51, we will consider only the leading contribu
tion coming from Resz(1/2) and which is correctly given
above.

In order to obtain a reliable approximation~in any dimen-
sion! at the critical temperature where BEC occurs we
thus left with the task of determining the leading poles of
z function associated with the Schro¨dinger equation. Con-
cerning this determination there are deep connections
tween thez function of an operator and its heat-kernel d
fined as@27#

K~ t !5(
N

8 e2t~EN2mc!. ~2.12!

The small-t behavior of Eq.~2.12! is of special relevance
here,

K~ t !;
1

~4pt !d/2 (
l 50,1/2,1, . . .

`

alt
l , ~2.13!

where for a generally curved spacetime in the meantime
first 6 coefficients are known for an arbitrarily shap
smooth cavity@28# and for an arbitrary second-order ellipt
operator with leading symbol the metric of the spacetim
We will need here only the first two coefficients which f
the Schro¨dinger operator at hand read

a05S 2m

\2 D d/2

V, ~2.14!

a1/25S 2m

\2 D ~d21!/2Ap

2
~]V!b, ~2.15!

with V the volume of the cavity,]V the area of its boundary
and b being a parameter depending on the boundary co
tions,

b5H 21 for Dirichlet boundary conditions

1 for Neumann boundary conditions.
~2.16!

Although to the authors knowledge Neumann boundary c
ditions do not occur in physical applications of nonrelativ
tic theories considered here, we include them for mathem
cal completeness and because they do not lead to any
difficulty in calculation. The relevance of Neumann boun
ary conditions in physics stems from the treatment of
electromagnetic field in the presence of ideal conduct
plates, or the bag model in quantum chromodynam
~QCD!.
o
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As is easily seen, the residues ofz(s), Eq. ~2.8! might be
expressed through the heat-kernel coefficients in Eq.~2.13!.
Using the integral representation for theG function we write

z~s!5
1

G~s! (
N

8 E
0

`

dt ts21e2~EN2mc!. ~2.17!

Then we split the integral intotP@0,1# andtP@1,̀ ). For the
first interval we use the asymptotic expansion~2.13!, the
contribution from the second interval is analytic ins since
the pole terms come from thet→0 behavior of the integrand
Thus we find

z~s!5
1

~4p!d/2

1

G~s! (
l 50,1/2,1, . . .

`

alE
0

1

dt ts212d/21 l

1~finite pieces!

5
1

~4p!d/2

1

G~s! (
l 50,1/2,1, . . .

`
al

s1 l 2d/2
1~finite pieces!

~2.18!

and read off

Resz~d/2!5
a0

~4p!d/2G~d/2!
, ~2.19!

Resz„~d21!/2…5
a1/2

~4p!d/2G„~d21!/2…
. ~2.20!

Additional poles are located to the left of the above on
The associated residues will depend on the details of
boundary of the cavity like its extrinsic curvature form. Ha
ing, however, current experimental situations in mind, the
are probably negligible and so we are not going to pres
more than the subleading order in our results. In doing t
results will be very comprehensible, but let us stress t
higher orders could be included easily.

Using Eqs. ~2.19!, ~2.20!, ~2.14!, ~2.15! in the result
~2.11! for the partition sum, we find to the two leading orde
~as mentioned, ford51, now and in the following, only the
leading piece is correct and will be considered!

q5q01Li ~d12!/2~e2b~mc2m!!
V

lT
d

1
b

4

]V

lT
d21

Li ~d11!/2~e2b~mc2m!!1•••, ~2.21!

with the de Broglie wavelength

lT5
h

A2pmkT
. ~2.22!

Here it is clearly seen that the expansion parameter is g
by ~typical extension of the cavity!/lT . Our results are ac-
curate for large values of the expansion parameter; this
the expansion obtained is an expansion about the therm
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namic limit, which is the relevant one for considering BE
It is useful to introduce the dimensionless expansion par
eter

j5
L

lT
~2.23!

with the definitionsV5Ld and]V5kLd21. The dimension-
less parameterk contains information related to the shape
the boundary. Then Eq.~2.21! reads

q5q01Li ~d12!/2~e2b~mc2m!!jd

1
kb

4
Li ~d11!/2~e2b~mc2m!!jd211•••. ~2.24!

At sufficiently low temperatures, where the ground-st
population is large, the approximationm.mc5E0 holds.
Then using Lin(1)5zR(n), n.1, Eq. ~2.21! simplifies to

q5q01zR„~d12!/2…
V

lT
d

1
b

4
zR„~d11!/2…

]V

lT
d21

1•••,

~2.25!

which is a very good approximation at some range below
critical temperature.

Let us now continue with the particle number,

N5b21S ]q

]m D U
T,V

. ~2.26!

Here one has

N5N01(
N

8
e2b~EN2mc!

12e2b~EN2mc!
, ~2.27!

with the ground-state occupation number

N05
d0

eb~mc2m!21
. ~2.28!

~Recall thatmc5E0 .) The high-temperature expansion ofN
is easily obtained by noting

]Lin~x!

]x
5

1

x
Lin21~x!. ~2.29!

It reads

N5N01Lid/2~e2b~mc2m!!jd

1
kb

4
Li ~d21!/2~e2b~mc2m!!jd211•••. ~2.30!

The critical temperatureTc ~in the absence of a phase tra
sition! can be defined as the temperature at which the n
ber of particles in the ground state begins to become la
We will set N5 f N0 with f representing the fraction of par
ticles in the ground state. If we assumeN0@1, then for tem-
peratures close toTc we expectm.mc @see Eq.~2.28!#. The
behavior of the polylogarithms in Eq.~2.30! depends on the
.
-

f

e

e

-
e.

dimensiond. Ford.3 all of the terms in Eq.~2.30! are finite
asm→mc , and we can approximate Eq.~2.30! by

N.zR~d/2!jc
d1

kb

4
zR„~d21!/2…jc

d211•••. ~2.31!

The critical temperature is defined viajc obtained by taking
T5Tc in Eq. ~2.23!. This assumesf !1. Defining

j0
d5

N

zR~d/2!
, ~2.32!

which gives the critical temperature in the bulk~or thermo-
dynamic! limit,

T05
h2

2pmkS N

VzR~d/2! D
2/d

, ~2.33!

and assuming thatjc5j0(11g), with g!1, to leading or-
der we can approximate~we use the temperature here!

Tc5T0S 12
kb

2d

zR„~d21!/2…

zR
~d21!/d~d/2!

1

N1/d
1••• D . ~2.34!

It is seen, that, depending on the boundary conditions
posed, the critical temperature can increase or decrease
magnitude of the correction behaves likeN21/d and is typi-
cally not negligible. It is seen explicitly that the correction
are going to vanish forN→`.

Let us now consider the lower-dimensional cases and
start withd53. Then we need

Li1~e2b~mc2m!!52 ln@12~e2b~mc2m!!#. ~2.35!

Nearm.mc we use Eq.~2.28! to approximate

b~mc2m!5 lnS 11
1

N0
D.

1

N0
. ~2.36!

Then in three dimensions the analogue of Eq.~2.31! reads

N~12 f !.zR~3/2!j31
kb

4
ln~ f N!j21•••. ~2.37!

Here it is not possible to setf 50 in order to define a critica
temperature, since in order to obtain Eq.~2.37! we have as-
sumedN0@1 @see Eq.~2.36!#. This roughly reflects the fac
that in three dimensions~as well as in 1 and 2 as seen below!
the number of excited states is lower than in higher dim
sions, and as a result, in the temperature range conside
particles have to reside in the ground state in order that
thermodynamic equation forN is fulfilled. However, given
f Þ0 andN, this might be solved for the temperature,

T5T0H 12
2

3
~ f 1a!J ~2.38!

with

T05
h2

2pmkS N

zR~3/2!VD 2/3

~2.39!
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and

a5
kb ln~ f N!

4zR
2/3~3/2!N1/3

, ~2.40!

valid nearm.mc . This parallels completely Eq.~2.34!. De-
fining the critical temperatureTc as the temperature where
given fractionf of the number of particlesN is in the ground
state, Eq.~2.38! can easily be used to determineTc . This
equation also shows that in the thermodynamic limit,f may
be set to zero andT0 is a ‘‘real’’ critical temperature. This
reflects the fact that in three-dimensional unbounded sp
the ideal Bose gas exhibits Bose-Einstein condensation in
sense of a phase transition.

We proceed withd52 and need in addition

Li1/2~e2b~mc2m!!.A p

b~mc2m!
1•••, ~2.41!

valid for m.mc . Using the same approximation as befo
b(mc2m).1/N0 , this results in

N~12 f !5j2ln~ f N!1
kbAp

4
jAf N1•••. ~2.42!

Solving to leading order forj given f .0 we find

jc5A N

ln~ f N!
~2.43!

or in the temperature

Tc5
h2

2pkm

N

ln~ f N!V
. ~2.44!

Finally in d51 considering only the leading contributio
results in

jc5A N

p f
~2.45!

with

Tc5
h2

2pkm

N

p f V
. ~2.46!

In dimensionsd51 andd52 it is clearly seen that we can
not set f 50. This reflects the fact that even in the therm
dynamic limit Bose-Einstein condensation~as a phase tran
sition! is not possible.

Another interesting quantity of the system is its intern
energy defined by

U5H 2
]

]b
1

m

b

]

]mJ q. ~2.47!

Of course the energy of the system is the sum of the sin
particle energiesEN multiplied by the occupation number,

U5U01(
N

8 EN

e2b~EN2mc!

12e2b~EN2mc!
. ~2.48!
ce
he

,

-

l

e-

HereU0 is the zero-point energy,

U05
d0E0

eb~E02m!21
. ~2.49!

To the approximation considered,U is most easily found by
using Eqs.~2.11! and~2.29!. As an immediate result we hav

U52
]q

]b
1mN

5U01
d

2
b21Li ~d12!/2~e2b~mc2m!!jd

1
kb

8
~d21!b21Li ~d11!/2~e2b~mc2m!!jd21

1E0Lid/2~e2b~mc2m!!jd

1E0

kb

4
Li ~d21!/2~e2b~mc2m!!jd211•••. ~2.50!

With the already presented expansions aroundm.mc the
behavior near the phase transition is easily displayed.

Finally we are left with considering the specific heat,

C5S ]U

]T D
N,V

. ~2.51!

The slightly more difficult point here is, thatN has to be
considered as fixed and som has to be considered as a fun
tion of N andb. We will need (]/]b)(bm), which is found
by differentiating Eq.~2.27! given thatN is fixed,

]N

]b U
N,V

50. ~2.52!

Using Eq.~2.30! to the leading order, condition~2.52! yields

]

]b
@b~E02m!#

52
~d/2!b21Lid/2~e2b~mc2m!!jd

d0

~e2b~mc2m!!

@12~e2b~mc2m!!#2
1Lid/221~e2b~mc2m!!jd

.

~2.53!

It is seen that in the approximationm5mc one finds the
above equation to yield zero as it should. Neglecting pie
coming from Eq.~2.53! ~one can show that this is justifie
for d,7) we only have to use Eq.~2.50! to find

C

k
5

d

2S 11
d

2DLi ~d12!/2~e2b~mc2m!!jd

1
kb

8 S d221

2 DLi ~d11!/2~e2b~mc2m!!jd211•••,

~2.54!
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showing once more the decrease or increase in the spe
heat depending on the boundary conditions. Using previ
formulas, expansions form.mc and for specific dimension
are easily found.

A slightly different treatment, which we do not pursue
this paper, could also be used. This uses the effective fu
ity ~for the anisotropic harmonic oscillator see@14#!

ze f f5ze2bE1, ~2.55!

where E1 is the first excited level with degeneracyd1 .
Whereas in the calculations presented above only the gro
state has been treated separately. We can now separa
ground state and the first excited level to find

q5q01d1Li 1~ze f f!1Li ~d12!/2~ze f f!
V

lT
d

1
b

4

]V

lT
d21

Li ~d11!/2~ze f f!1•••.

This expansion is a very good approximation even below
critical temperature~for the harmonic oscillator see@14#!. All
thermodynamical properties are obtained in the same ma
as before.

III. DENSITY OF STATES METHOD

An alternative approach to the use of the Mellin-Barn
contour integral representation is to try to convert the su
for the thermodynamic quantities directly into ordinary int
grals with an appropriate density of states factor. This
been widely used in a variety of problems in statistical m
chanics.~See Ref.@29#, for example!. Recently Grossmann
and Holthaus@10,11# have used such a density of stat
method to study the statistical mechanics of particles i
harmonic oscillator potential trap, and in a three-dimensio
cubic box@16# with Dirichlet boundary conditions. The har
monic oscillator trap is characterized by a density of stat

r~E!5
E2

2V3
1g

E

V2
, ~3.1!

whereV5(v1v2v3)1/3 is the geometric mean of the anis
tropic harmonic oscillator frequencies. In Ref.@30# we
showed how it is possible to evaluateg analytically, and
obtain additional corrections to Eq.~3.1! ~see also@14#!. The
purpose of the present section is to discuss the metho
greater detail in a more general setting, and to show h
results equivalent to those of the previous section may
obtained with the density of states method. The basic i
behind the method can be found in Ref.@31# with a number
of examples illustrated.

Suppose that we have a self-adjoint differential opera
D that possesses a set of eigenvalues$lN% that are all posi-
tive. HereN represents a multi-index which labels the eige
values. For the case of statistical mechanics in a cavityD
can be taken to be the Hamiltonian withlN the energy levels
EN . The eigenvalues depend on the details of the cavity
boundary conditions imposed, but the method we desc
can be used regardless of such details. LetN(l) be the num-
ific
s
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s
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a
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e
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ber of modes for the boundary value problem in the cav
for which the eigenvalueslN<l. We can write

N~l!5(
N

u~l2lN!, ~3.2!

whereu(x) is the Heaviside distribution~or step function!
defined by

u~x!5H 1, x.0,

0, x,0,

1

2
, x50.

~3.3!

This gives the result

N~l!5 (
lN,l

11 (
lN5l

1

2
, ~3.4!

as used by Baltes and Hilf@31#.
The aim now is to treat the eigenvalues as a continu

distribution rather than a discrete set by introducing the
genvalue~or spectral! densityr(l). We define

r~l!dl5N~l1dl!2N~l! ~3.5!

.
dN~l!

dl
dl. ~3.6!

Use of Eq.~3.2! for N(l), along with the distributional iden-
tity u8(x)5d(x) gives

r~l!5(
N

d~l2lN!. ~3.7!

If we use the familiar exponential representation for t
Dirac d distribution, then

r~l!5(
N

1

2p E
2`

`

dk eik~l2lN!5(
N

1

2p i E2 i`

i`

dt et~l2lN!.

~3.8!

We may now translate the integration contour in Eq.~3.8! to
the right by an amountc wherecPR with c.0, and assume
that we are permitted to interchange the order of the sum
tion and integration. This results in

r~l!5
1

2p i Ec2 i`

c1 i`

dt etlK~ t !, ~3.9!

where

K~ t !5(
N

e2tlN. ~3.10!

Equation~3.9! shows thatr(l) is the inverse Laplace trans
form of K(t). Inversion of Eq.~3.9! results in

K~ t !5E
0

`

dl e2tlr~l!. ~3.11!
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Another way of arriving at Eq.~3.9! is to note that Eq.~3.11!
follows directly from Eqs.~3.7! and~3.10!, establishing that
r(l) is the Laplace transform ofK(t). The inversion for-
mula for Laplace transforms gives Eq.~3.9! immediately
without the intermediate steps in Eq.~3.8!.

The point of Eqs.~3.9! and ~3.11! is that givenK(t) as
defined in Eq.~3.10! we can evaluate the density of states
a straightforward way. In certain simple cases, such as
harmonic oscillator potential, where the eigenvalues can
written down explicitly, it is possible to perform the sum
Eq. ~3.10! and evaluateK(t) in closed form~see Ref.@30#
for a case of this!. In the generic case, where the eigenvalu
are not known explicitly, we can still obtain a result for th
density of states by using the known asymptotic expans
for K(t) as t→0 @27#.

Assume that ast→0 we have the generic expansion

K~ t !.(
i 51

k

ci t
2r i1O~ t2r k11! ~3.12!

for some coefficientsci and powersr i with r 1.r 2.•••

.r k . The simplest way to evaluater(l) is to use Eq.~3.11!
and the relation

t2z5
1

G~z!
E

0

`

dl lz21e2tl, ~3.13!

which is valid for Rez.0. It is now easy to see that

r~l!.(
i 51

k
ci

G~r i !
l r i21. ~3.14!

Integrating this result with respect tol results in

N~l!.(
i 51

k
ci

G~r i11!
l r i. ~3.15!

Although the analysis that have presented makes no
tempt at proper mathematical rigour, the main result in
~3.14! of ~3.15! is in agreement with a refinement of Kar
mata’s theorem due to Brownell@32# ~a nice account is con
tained in Ref.@31#!. It is important to emphasize that th
result forr(l) or N(l) refers really to the average numb
of eigenvalues. Generally the number will fluctuate arou
some average value. These fluctuations can be importa
some contexts@31,33#. Another point worth stressing is tha
our results have assumed thatr k in Eq. ~3.12! is positive. The
results ~3.14! and ~3.15! are actually true for allr k if we
define 1/G(r i)50 when r i50,21,22, . . . . Theestablish-
ment of this result requires a more powerful approach t
Laplace transforms@32#.

The density of states~3.14! is determined by a knowledg
of the coefficientsci appearing in the asymptotic expansio
of K(t). These coefficients can be evaluated from a kno
edge of the generalizedz function associated with the eigen
valueslN as discussed in the previous section. Defining

z~s!5(
N

lN
2s , ~3.16!
e
e

s

n

t-
.

d
in

n

l-

the analysis in Sec. II is easily modified to show thatz(s)
has a simple pole ats5r i with residue

Resz~s!us5r i
5

ci

G~r i !
~3.17!

for r iÞ0,21,22, . . . ; and

z~s52r i !5~21!r i~2r i !!ci ~3.18!

for r i50,21,22, . . . . Therefore the coefficientsci appear-
ing in the density of states may also be found from a kno
edge of the generalizedz function. This provides a direc
link between the density of states approach and the me
described in Sec. II.

We will conclude this section by showing how the dens
of states method may be used in the specific case of an i
gas confined in a general cavity. Theq potential defined
earlier was written as

q5q01qex , ~3.19!

where

q052d0ln~12ze2bE0! ~3.20!

was the ground-state contribution, and

qex5 (
n51

`
enb~m2mc!

n (
N

8 e2nb~EN2E0! ~3.21!

represents the contribution from the excited states. The
over energy levels in Eq.~3.21! can now be converted into
an integral over a continuous energy variable by introduc
a density of states factor. From Eq.~3.14! and using the
coefficientsci found in Sec. II we have

r~E!.
Vbd/2Ed/221

lT
dG~d/2!

1
b

4

~]V!b~d21!/2E~d23!/2

lT
d21G„~d21!/2…

~3.22!

if we keep only the first-order correction to the bulk expre
sion as before. To this order we may approximate

qex. (
n51

`
enb~m2mc!

n E
E12E0

`

dE r~E!e2nbE. ~3.23!

Replacing the lower limit in the integration with 0, we obta

qex.lT
2dV Li ~d12!/2~e2b~mc2m!!

1
b

4
lT

2~d21!~]V!Li ~d11!/2~e2b~mc2m!! ~3.24!

in agreement with our earlier method. The replacemen
the lower limit on the integral with 0 assumesbE0!1 so
that the temperature is well above the temperature assoc
with the ground-state energy~i.e., kT@E0 .) If the energy
gapE12E0 is of the same order of magnitude as the groun
state energy, thenbE1!1 as well. Results for the particle
number and other thermodynamic quantities follow as
fore.
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IV. APPLICATION OF THE RESULTS
TO SOME CAVITIES

This section will discuss some specific examples like
rectangular box and the spherical cavity with various bou
ary conditions. The rectangular box has been the subjec
considerable investigation.~See Refs.@34,35# for reviews.!
In order to get all thermodynamic quantities as derived
Secs. II and III, we only need to give the constantb, the
volume of the cavityV, and the boundary]V. Another in-
teresting quantity is the lowest-energy eigenvalue as
critical value for the chemical potential.

A. Rectangular box

For the rectangular box with side lengthsL1 , . . . ,Ld one
can consider, for example, periodic, Dirichlet, and Neuma
boundary conditions. In Cartesian coordinatesx
5(x1 , . . . ,xd) with xiP@0,Li #.

For periodic boundary conditions,

f~x1 , . . . ,xi , . . . ,xd!5f~x1 , . . . ,xi1Li , . . . ,xd!,
~4.1!

with i 51, . . . ,d, the energy eigenvalues are

En1 , . . . ,nd
5(

i 51

d S 2p

Li
ni D 2

, niPZ. ~4.2!

Periodic identification means that effectively there is
boundary.~Equivalently we can regardV as thed torus.! In
this caseb50. Furthermore, one has for the volume

Vd5)
i 51

d

Li ~4.3!

andmc5E050.
For Dirichlet boundary conditions,

f~x1 , . . . ,xi 21,0,xi 11 , . . . ,xd!50,

f~x1 , . . . ,xi 21 ,Li ,xi 11 , . . . ,xd!50,

one gets

En1 , . . . ,nd
5(

i 51

d S pni

Li
D 2

, niPN. ~4.4!

As mentioned, see Eq.~2.16!, b521, the volume is as be
fore and, furthermore,

]V52(
i 51

d

Vd21
~ i ! . ~4.5!

Here,Vd21
( i ) is the volume of thei th side of the rectangula

cavity, Vd21
( i ) 5L1•••Li 21Li 11•••Ld . Furthermore,

E05(
i 51

d S p

Li
D 2

. ~4.6!

If we specialize to thed cube, then]V52dLd21 which gives
k52d.
e
-
of

n

e

n

Finally, for Neumann boundary conditions,

~]/]xi !f~x1 , . . . ,xd!uxi5050,

~]/]xi !f~x1 , . . . ,xd!uxi5Li
50,

the energy eigenvalues read

En1 , . . . ,nd
5(

i 51

d S pni

Li
D 2

, niPN0 , ~4.7!

with mc5E050, b51 andV, ]V, as before.
All thermodynamical quantities may now be given imm

diately with the formulas in Sec. II. Especially for the critic
temperature one has that periodic boundary conditions gi
critical temperature identical to the thermodynamic limit~a
result of being no boundary there!, Dirichlet boundary con-
ditions increase it and Neumann boundary conditions
crease it.

Looking at the distribution of the eigenvalues around t
ground state of the system an intuitive explanation of t
behavior is possible. Let us assume for this equal compa
fication sidesLi . It is clear that the lower the density o
eigenvalues near the ground state the higher the trans
temperature will be. Then the following might be state
Neumann boundary conditions lead to the lowest conden
tion temperature because it has the smallest spacing betw
the ground state and the first excited level. This compens
the doubled number of eigenstates in the periodic case,
eigenvalues that are, however, four times higher. The dif
ence between Neumann and Dirichlet boundary condition
based on the same observation; in addition the degenera
the eigenvalues is the same for these two boundary co
tions. The difference between periodic and Dirichlet boun
ary conditions is not obvious; however, the results show t
the slightly smaller level spacing for Dirichlet boundary co
ditions is more than compensated by the doubling of
degeneracy for periodic boundary conditions.

B. Spherical cavities

For spherical cavities an explicit knowledge of the eige
values is not at hand and for that reason also a nume
treatment of the partition sum is not immediate. For this ki
of example our analytical approach is most useful.

It is convenient to introduce a spherical coordinate ba
with r 5uxu andd21 anglesV5(u1 , . . . ,ud22 ,w). In these
coordinates, a complete set of solutions of the Schro¨dinger
equation together with one of the mentioned boundary c
ditions may be given in the form

f l ,m,n~r ,V!5r 12~d/2!Jl 1[ ~d22!/2]~A2mwl ,nr /\!Yl 1~d/2!~V!,
~4.8!

with Jl 1(d22)/2 being Bessel functions andYl 1d/2 hyper-
spherical harmonics @36#. Here, El ,n5wl ,n

2 and the
wl ,n(.0) are determined through the boundary conditio
by

Jl 1@~d22!/2#~A2mwl ,nR/\!50 ~4.9!

for Dirichlet boundary conditions and
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05
12d/2

R
Jl 1@~d22!/2]~A2mwl ,nR/\!

1
A2mwl ,n

\
Jl 1[ ~d22!/2]8 ~A2mwl ,nr /\!ur 5R

for Neumann boundary conditions. Although none of the
eigenvalues is known explicitly, in order to obtain an a
proximation of all thermodynamic quantities, it is alrea
enough to state the volume and the boundary volume of
spherical cavity,

V5
pd/2Rd

G~d/211!
, ]V5

2pd/2Rd21

G~d/2!
, ~4.10!

and to apply the results of the previous sections.

V. DISCUSSION AND CONCLUSIONS

We have described two methods for treating the id
Bose gas using the grand canonical ensemble in a gen
cavity. The first method, described in Sec. II, treats the p
tition function as a sum over the discrete energy levels
making use of the Mellin-Barnes integral representation
the exponential function. The second method shows how
obtain an adequate density of states factor so that the
h.

yr

an

et

n,
tt.

c

ta

n

p.
e
-

e

l
ral
r-
y
r
to
m

over discrete energy levels can be replaced with an integ
Both methods make use of the so-called heat-kernel co
cients for the Schro¨dinger operator, and equivalence betwe
the two methods is shown in quite a general setting.

Our analysis shows clearly the way in which the geome
of the cavity enters in all thermodynamic properties. In t
limit considered, namely,j5L/lT@1, the leading correction
to the bulk limit term jd enters via the propertyk
5(]V)/V(d21)/d. Thus the leading-order correction is com
pletely described by the volume and area of the cavity, w
all finer details washed out forj@1. Finer detail would be
present in the next to subleading order in terms of the ext
sic curvature of the boundary.~The extrinsic curvature de
scribes how the normal vector to the boundary varies w
moving along the boundary.!

These ideas are as well applicable to the canonical
semble. Furthermore, due to the connections between
microcanonical and the grand canonical approach stated
cently in @37–39# it seems possible to develop this approa
also for the microcanonical ensemble.
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